

Best Buy Corporate Building D (4) <u>Richfield, MN</u>

Technical Assignment I

Jon Aberts Structural Option Professor Boothby

September 29th, 2008

Executive Summary:

This report is an analysis of the existing structural systems in Best Buy Corporate Building D, located in Richfield, MN. Building D is one of 4 buildings connected to a central hub. Completed in February of 2003, the corporate center was a means to consolidate their several offices and 7,500 employees located throughout Minneapolis, MN. The four buildings include a commons area containing the Best Buy University, childcare

center, fitness center, transit stop, parking facilities and employee cafeteria. The 42.5-acre campus is surrounded by a one-mile walking/biking path, ponds and natural landscaping. The focus of this report, Building 4 or D, is a six story braced frame, steel system.

The 304,610 square foot building consists of slab on grade construction with wide flange steel columns supported on concrete piers. Lateral loads are supported by a braced frame system and the exterior of the building is provided by an architectural precast curtain wall. Considering the large amounts of integrated technologies, there are no other major dead or live loads other than those listed in the provided drawings. The occupancy of the building, as expected, is primarily for office use. There are a few open spaces on the first level for future tenants, but the bulk of the building has open space for office partitions. The building is as mentioned 6 stories measuring 88' in height. The building facade on the north-west end tappers outward as its height increases. For purposes of analysis with respect to wind loading, the largest dimension was used in order to stay conservative. The maximum total base shear was found to be 1,350 kips in the N-S direction with 1,027 kips due to wind loading. The maximum overturning moment was found to be 73,378 ft-kips again in the N-S direction and again with 52,210 ft-kips being a result of wind loading. While seismic loading was calculated, the results were small in comparison. This is a reasonable result considering the location of the site and its distance from earthquake prone areas.

The code basis for this building is U.B.C. 1997, but to keep the entire set of calculations standard with the current structural technology, ASCE 7-05 was used to calculate Wind and Seismic forces. When performing my spot check analysis, I found that the calculated members were slightly different than the proposed members in the design, however typically close. For the gravity loading, the beams and girders I calculated were slightly different than in the original design which is most likely due to the code difference (ASD to LRFD). Also, the change in design code can be attributed for part of the difference.

Building Description:

General:

The Best Buy corporate campus consists of four buildings connected by a central hub. This report focuses on building number four, which is a six story braced frame, steel system. The 304,610 square foot building consists of slab on grade construction with wide flange steel columns supported on concrete piers. Lateral loads are supported by a braced frame system. The exterior of the building consists of an architectural precast curtain wall with integrated ribbon windows. Considering the large amounts of integrated technologies, there are no other major dead or live loads other than those listed in the provided drawings. The occupancy of the building, as expected, is primarily for office use. There are a few open spaces on the first level for future tenants, but the bulk of the building has open space for office partitions.

Foundation:

The foundation for this structure uses a combination of spread footings and piers for the interior and strip footings on the exterior. The concrete slab on grade is unreinforced with a 4" minimum depth with the basement slab on grade having a 6" minimum. Footings are placed under the columns and braced from system. Step footings were used where needed for extra support. All exterior footings must extend 4' below the finished grade to protect from frost with open air foundations having a minimum of 5'. Spread and strip footings were designed for a net soil bearing pressure of 10,000 psf.

Floor System:

The floor system Building D utilizes a composite beam floor framing system. The overall slab is 6¼" using 3" 20 gauge composite deck and 3¼" lightweight concrete covering. The first floor uses #4 rebar at 18" on center for concrete reinforcing while the remaining floors use 6x6-W2.1xW2.1 welded wire frame. Each internal bay has a typical size of 30'x30' and external bays are typically 30'x42'8". The internal beams are typically W16x26 while the typical external beam is W18x40. Finally, the typical internal girder size is W21x50 and external is W18x35. Material strength is given as 3500 psi for the concrete and A992 50 ksi steel for the beams and girders. Spray on fireproofing was used to meet the fire rating required for the building. The floor framing system along with a typical interior bay is shown below.

н	W18x40 (2)	W16x26 (¾)	W18x40 (2)	-11
	W18x40 (2¾)	W16x26 (1¼)	W18x40 (2¾)	_
W18x35	W18x40 (2¾)	[≷] 2 x5 [©] ₩16x26 (1¼)	^{₹2} 1× 50 ₩18×40 (2¾)	V18x35
(1½)		(11/4)	(11)4)	(1½)
-	W18x40 (2)	W16x26 (¾)	W18x40 (2)	

Columns:

While columns for the building vary in size and weight, the typical column depth is 14". The columns are spaced according to the bay size mentioned previously. Below is a typical column cross section showing overall column size and reinforcement.

Roof:

As with the floor system, the roof consists of a composite deck using 3" 20 gauge roof decking with 3 $\frac{1}{2}$ " lightweight concrete. This system is covered by a rigid insulation and B.U.R. system. Girder size did not need to increase for the interior; however the exterior girders were increased to W24x55. There is a penthouse located on the roof that houses all the major mechanical components for the entire building.

Connections:

Best Buy Building D uses both shear and double plate connections. The schedules are shown below along with a typical connection detail.

BEAM CONNECTION SCHEDULE

	SIN USING SHORT-	NGLE SHEAR TAB (F SLOTTED HOLES TRA	LEXIBLE) INSVERSE	CONNECTION TO DIRECTION OF	LOAD.
BEAM SIZE	CONNECTION CAPACITY ((ΦR_u)	SHEAR TAB SIZE	WELD SIZE *t	NO. OF ¾"Ø A325-N BOLTS	REMARKS
. W8 W10	11 kips	₽ ¼×4½×0°-6"	3∕16"	2	14 kips w/o COPED FLANGE
W12 W14	28 kips	₽ ¼×4½×0°−9°	3∕ 18"	3	
W16	45 kips	₽ ¼×4½×1'-0"	∛ie"	4	
W18	62 kips	₽ ¼×4½×1°-3"	¥16"	5	
W21	79 kips	₽ %e×4½×1'-6"	1/4 "	6	
W24	96 kips	₽ 5/16×4½×1'-9″	1⁄4"	7	
W27 W30	113 kips	₽ ¾x4½x2'-0"	5⁄16"	в	
W33	130 kips	₽ ¾8×4½×2'-3"	¥°	9	

BEAM CONNECTION SCHEDULE

BEAM	CONNECTION	ANGLE	NO. OF 34"¢	REMARKS
SIZE	(\$R _U)	SIZE	BOLTS	
WS	11 kips	∠ 4×3½×¼×0'−6"	Z	24 kips w/o COPED FLANGE
W10	20 kips	∠ 4x3½x¼×0'−6"	2	27 kips w/o COPED FLANGE
W12	33 kips	∠ 4x3½x¼x0'-9"	3	40 kips w/o COPED FLANGE
W14	47 kips	∠ 4×31⁄2×1⁄4×0'−9"	3	
W16	66 kipa	∠ 4x3½×¼×1'−0"	4	
W18	96 kips	∠ 4×3½×¼×1'−3"	5	
₩21	133 kips	∠ 4×3½x516×1'-6"	6	
W24	175 kipa	∠ 4x3½x≸i6x1'-9"	7	
W27 W30	233 kips	∠ 4×3½×5%s×2'-0"	8	

Lateral System:

For the lateral system, this building utilizes a composite floor system and braced framing. The vertical members of the braced frame consist of 3 W14 columns spliced together at the 3rd and 5th floors. The beams between these columns are heavier, W16x57. As shown below, there are 2 diagonal HSS members to provide further support.

Envelope:

The building has an angled wall on the end furthest from the central hub. The façade is 6" architectural precast concrete separated by ribbon windows on each level. The precast components were cast with gravity load connections and lateral load bracing where required by the precast supplier. A detail of the precast connection to the building frame is shown below. This is at the roof level, however it is typical throughout.

Design Codes:

- Building code: ASCE 7-05
- Cast-In-Place Concrete: "Building Code Requirements for Reinforced Concrete" (ACI 318)
- Masonry: Building Code Requirements for Masonry Structures
- Structural Steel: 13th Edition of "Steel Construction Manual"
- Welding: The American Welding Society Code for Buildings (AWS D1.1)
- Metal Decking: "Specification of the Steel Deck Institute"

Materials:

Cast-In-Place Concrete:

- Footings and foundation walls 4000 psi at 28 days
- Interior slab on grade 4000 psi at 28 days
- Exterior slab on grade 4000 psi at 28 days
- Topping and concrete over metal decking 3500 psi at 28 days
- Lightweight concrete has minimum dry unit weight of 107 pcf and maximum of 115 pcf

Masonry:

- Hollow masonry unit -1900 psi as provided by ASTM C90
- Grout 2000 psi at 28 days

Steel:

- Structural wide flange shapes $F_y = 50,000$ psi as given by ASTM A992
- Base plate at braced frame $F_y = 50,000$ psi as given by A572
- Structural tube $F_y = 46,000$ psi as given by ASTM A500, Grade B
- Structural pipe $F_y = 35,000$ psi as given by ASTM A53, Grade B
- Welding electrodes E70XX as given by A233
- Deck welding electrodes E60XX as given by A233
- High strength bolts $F_y = 74,000$ psi as given by A325
- Anchor bolts $F_y = 36,000$ psi as given by A36

Metal Deck:

- All metal floor deck shall be 3" deep, minimum 20 gauge, conforming to ASTM A611 or A446
- All metal roof deck shall be minimum 20 gauge, 3" deep type N, wide rib, minimum I=0.964in⁴, minimum S_p=0.501in³, minimum S_n=0.552in³ per foot of width and yield stress 33,000 psi minimum

Metal Studs:

- Metal studs 16 gauge and thicker $F_y = 50$ ksi
- Metal studs 18 gauge and thinner $F_y = 33$ ksi

Technical Report 1 - September 29, 2008	Jon Aberts
Best Buy Corporate Building #4	Faculty Advisor: Professor Boothby
Richfield, MN	Structural Option

Gravity Loads:

All gravity load calculations found in the existing building used Universal Building Code 1997 as their design standard. For simplicity and current accurate standards, I will use ASCE 7-05 to find, factor, and calculate all gravity loads in the building. If uniform differences in sizes occur, it may be a result of this change.

Live Loads:	
Roof:	40 psf + Snow loads
Floor: Level 1:	100 psf
Levels 2-6:	80 psf
Stairs, Corridors and Lobbies:	100 psf
Mechanical Rooms:	125 psf
Total:	$\overline{445 \text{ psf}}$ + Snow loads
Dead Loads:	
Roof: (Design)	25 psf
Floor: (Superimposed)	5 psf
(Finishes @ Level 1)	25 psf
(Partitions @ Levels 2-6)	20 psf
Total:	75 psf
Snow Loads:	
Use the equation	$p_{f}=0.7*C_{e}*C_{t}*I*p_{g}$
From Table 7-2, Exposure Factor, $C_e =$	0.9
From Table 7-3, Thermal Factor, $C_t =$	1.0
From Table 7-4, Importance Factor, $I =$	1.1
From Figure 7-1, Ground Snow Load, $p_g =$	50 psf
Total Snow Load =	34.65 psf

Wind Loads:

The charts below summarize the results found from my wind calculation analysis. Specific calculations of wind forces are located in the Appendix in Excel form. Wind loading diagrams also follow.

	Winc	Windward		Leeward		Max
Z(ft)	N-S	E-W	N-S	E-W	(psi) N- S	(psr) E- W
0-15	11.23	11.23	-11.59	-6.76	22.82	17.99
20	11.91	11.91	-11.59	-6.76	23.50	18.67
25	12.46	12.46	-11.59	-6.76	24.05	19.22
30	13.00	13.00	-11.59	-6.76	24.59	19.76
40	13.82	13.82	-11.59	-6.76	25.41	20.58
50	14.50	14.50	-11.59	-6.76	26.09	21.26
60	15.04	15.04	-11.59	-6.76	26.63	21.80
70	15.59	15.59	-11.59	-6.76	27.18	22.35
80	16.13	16.13	-11.59	-6.76	27.72	22.89
90	16.54	16.54	-11.59	-6.76	28.13	23.30
88	16.46	16.46	-11.59	-6.76	28.05	23.22

	N-S	E-W
Shear @ 6	185.97	38.87
Shear @ 5	181.91	37.83
Shear @ 4	176.29	36.41
Shear @ 3	170.60	34.97
Shear @ 2	156.75	31.65
Shear @ 1	3.43	0.68
Shear @ Ground	152.35	30.36
Base Shear	1,027.29	210.76
Overturning Moment	52,210.43	10,808.69

Jon Aberts

Seismic Loads:

The charts below summarize the results found from my seismic calculation analysis. Specific calculations of seismic forces are located in the Appendix in Excel form.

	Summary N-S					
Level	W _x	h _x	w _x h _x ^k	C _{vx}	F _x (kips)	M _x (ft- kips)
6	1,796.14	88.00	2,376,777.04	0.25556	82.45	7,255.79
5	2,867.05	73.35	2,832,213.68	0.30454	98.25	7,206.76
4	2,867.05	58.68	1,979,465.13	0.21284	68.67	4,029.51
3	2,867.05	44.01	1,247,305.17	0.13412	43.27	1,904.31
2	2,867.05	29.34	650,545.91	0.06995	22.57	662.14
1	2,867.05	14.67	213,800.17	0.02299	7.42	108.81
Σ	16,131.39		9,300,107.09	1.00	322.63	21,167.32

	Summary E-W					
Level	w _x	h _x	w _x h _x ^k	C _{vx}	F _x (kips)	M _x (ft- kips)
6	1,796.14	88.00	2,376,777.04	0.25556	82.45	7,255.79
5	2,867.05	73.35	2,832,213.68	0.30454	98.25	7,206.76
4	2,867.05	58.68	1,979,465.13	0.21284	68.67	4,029.51
3	2,867.05	44.01	1,247,305.17	0.13412	43.27	1,904.31
2	2,867.05	29.34	650,545.91	0.06995	22.57	662.14
1	2,867.05	14.67	213,800.17	0.02299	7.42	108.81
Σ	16,131.39		9,300,107.09	1.00	322.63	21,167.32

Further Considerations:

The following items were not covered in this technical report, but are still important to completely understand all of the building systems:

- Wind uplift on the roof
- Snow drift
- Story drift from lateral forces
- Deflection checks from gravity and lateral forces
- Specific lateral load calculations and values

Appendix

Best Buy Building D Assumptions and Information

Wind Loading Calculations

meters Steel 0.02 0.75 0.5746 1.7402 Rigid

3.4 52.8 0.277397 374.2743 0.83668 0.85

0.8

Wind Load Analysis

Building Pi	Period Para	
B (ft)	115	Struct. Type
L (ft)	455	Ct
h (ft)	88.00	×
K _{zt}	1	(check eq) T
K _d	0.85	Natural f
V (mph)	90	Rigidity
Importance	III	
I_w	1.15	Rigid
Exposure	В	g _Q =g _v
α	7	ž
Zq	1200	l _ž
Z _{min}	30	L _ž
С	0.3	Q
E	0.333333	G
1	320	
æ	0.250	Windward
b	0.45	Ср
a	0.143	
b	0.84	

Flexible	
g R	4.32
R _n	0.024
N ₁	15.97
η_{h}	17.28
η _B	0.196
η _L	299.07
R _h	0.056
R _B	0.881
RL	0.003
V _ž	40.77
β	0.05
R	0.11
G_{f}	0.8388

	Leeward	
	Ratio	Cp
N-S	0.253	-0.50
E-W	3.957	-0.20

Pressure			
Windward	N-S	Pz	0.851
	E- W	Pz	0.851
Leeward	N-S	P _h	-0.599
	E- W	Ph	-0.350

Pressure Coef	ficients	
Internal	Enclo	sed
Enc. Type		
Internal (GC _{pi})	0.18	+/-

Flexiblity	
g _R	4.32
R _n	0.024
N ₁	15.97
η_h	17.28
η _B	0.196
ηL	299.07
R _h	0.056
R _B	0.881
R_L	0.003
V _ž	40.77
β	0.05
R	0.11
G_{f}	0.8388

K_z and q_z						
Z(ft)	Z(ft) K _z q _z					
0-15	0.57	11.55				
20	0.62	12.57				
25	0.66	13.38				
30	0.70	14.19				
40	0.76	15.40				
50	0.81	16.42				
60	0.85	17.23				
70	0.89	18.04				
80	0.93	18.85				
90	0.96	19.46				
88.00	0.95	19.34				

	Leeward	
	Ratio	Cp
N-S	0.253	-0.50
E-W	3.957	-0.20

Wind Distribution N-S										
Min	Max	pressure (psf)	Level	h/floor	Z-real	Area	Force	V (k)	M(ft-k)	
0	14.67	22.82	Ground	0	0	6674.85	152.35	152.35	0.00	
14.67	15	22.82	1	14.67	14.67	150.15	3.43	3.43	50.28	
15	20	23.50	2			2275.00	53.47			
20	25	24.05	2	14.67	29.34	2275.00	54.71	156.75	4599.00	
25	29.34	24.59	2			1974.70	48.56			
29.34	30	24.59	3			300.30	7.39			
30	40	25.41	3	14.67	44.01	4550.00	115.61	170.60	7508.00	
40	44.01	26.09	3				1824.55	47.60		
44.01	50	26.09	4	14.67	58 68	2725.45	71.10	176 20	10344 71	
50	58.68	26.63	4	14.07	50.00	3949.40	105.19	170.29	10344.71	
58.68	60	26.63	5			600.60	16.00			
60	70	27.18	5	14.67	73.35	4550.00	123.66	181.91	13342.89	
70	73.35	27.72	5				42.25			
73.35	80	27.72	6	14.65	<u>88 00</u>	3025.75	83.88	195.07	16265 56	
80	88	28.05	6	14.05	14.00 00.00		102.09	103.97	10303.30	
							Sum	1027.29	52210.43	

Jon Aberts

Best Buy Corporate Building #4 Richfield, MN Faculty Advisor: Professor Boothby Structural Option

Wir	nd Distribut	ion E-W							
Min	Max	pressure (psf)	Level	h/floor	Z-real	Area	Force	V (k)	M(ft-k)
0	14.67	17.99	Ground	0	0	1687.05	30.36	30.36	0.00
14.67	15	17.99	1	14.67	14.67	37.95	0.68	0.68	10.02
15	20	18.67	2			575.00	10.74		
20	25	19.22	2	14.67	29.34	575.00	11.05	31.65	928.64
25	29.34	19.76	2			499.10	9.86		
29.34	30	19.76	3			75.90	1.50		
30	40	20.58	3	14.67	44.01	1150.00	23.66	34.97	1538.95
40	44.01	21.26	3			461.15	9.80		
44.01	50	21.26	4	14.67	59 69	688.85	14.64	26.41	2126.26
50	58.68	21.80	4	14.07	50.00	998.20	21.76	30.41	2130.30
58.68	60	21.80	5			151.80	3.31		
60	70	22.35	5	14.67	73.35	1150.00	25.70	37.83	2774.58
70	73.35	22.89	5			385.25	8.82		
73.35	80	22.89	6	14.65	00 00	764.75	17.51	20 07	2420 14
80	88	23.22	6	14.05 88.00		920.00	21.36	30.07	3420.14
							Sum	210.76	10808.69

	Pressure Distribution						
	N-S E-W						
Level	h/floor (ft)	Z (ft)	V (k)	M (ft-k)	V (k)	M (ft-k)	
6	14.65	88.00	185.97	16,365.56	38.87	3,420.14	
5	14.67	73.35	181.91	13,342.89	37.83	2,774.58	
4	14.67	58.68	176.29	10,344.71	36.41	2,136.36	
3	14.67	44	170.60	7,508.00	34.97	1,538.95	
2	14.67	29.34	156.75	4,599.00	31.65	928.64	
1	14.67	14.67	3.43	50.28	0.68	10.02	
0	0	0	152.35		30.36		
Σ			1,027.29	52,210.43	210.76	10,808.69	

Building Properties				
B (ft)	115			
L (ft)	455			
h (ft)	88.00			
# of Stories	6.00			
ave. h/floor (ft)	14.67			
Seismic Use group	III			
Imp. (e)	1.5			
Site Classification	В			
S _s (%g)	0.06			
S₁ (%g)	0.027			
R	3			
Ct	0.028			
x	0.8			
TL	12			
Cu	1.7			
F _a	1			
Fv	1			
S _{MS}	0.06			
S _{M1}	0.027			
S _{DS}	0.04			
S _{D1}	0.018			

Seismic Loading Calculations

Response				
T _a	1.01			
Cs	0.02			

Load Summary (psf)				
Roof Dead	25			
Snow	34.65			
Floor Dead	50			
Ex. Wall Dead	15			
avg. wroof				
(lbs)	1,796.14			
avg. wfloors				
(lbs)	2,867.05			
Wtotal (lbs)	16,131.39			
V (lbs)	322.63			

Distribution					
k	1.60539				

Jon Aberts

	Summary N-S					
Level	W _x	h _x	w _x h _x ^k	C _{vx}	F _x (kips)	M _x (ft- kips)
6	1,796.14	88.00	2,376,777.04	0.25556	82.45	7,255.79
5	2,867.05	73.35	2,832,213.68	0.30454	98.25	7,206.76
4	2,867.05	58.68	1,979,465.13	0.21284	68.67	4,029.51
3	2,867.05	44.01	1,247,305.17	0.13412	43.27	1,904.31
2	2,867.05	29.34	650,545.91	0.06995	22.57	662.14
1	2,867.05	14.67	213,800.17	0.02299	7.42	108.81
Σ	16,131.39		9,300,107.09	1.00	322.63	21,167.32

	Summary E-W					
Level	W _x	h _x	w _x h _x ^k	C _{vx}	F _x (kips)	M _x (ft- kips)
6	1,796.14	88.00	2,376,777.04	0.25556	82.45	7,255.79
5	2,867.05	73.35	2,832,213.68	0.30454	98.25	7,206.76
4	2,867.05	58.68	1,979,465.13	0.21284	68.67	4,029.51
3	2,867.05	44.01	1,247,305.17	0.13412	43.27	1,904.31
2	2,867.05	29.34	650,545.91	0.06995	22.57	662.14
1	2,867.05	14.67	213,800.17	0.02299	7.42	108.81
Σ	16,131.39		9,300,107.09	1.00	322.63	21,167.32

SROT CHELK - TYPICAL OFFICE FLOOR -DEAD LOAD = CONC. + DECKING + STEEL + MEP + FINISHING = TOPSF LIVE LOAD = 100PSF (OFFICE) LOAD FACTORS = 1,20+1.62 = 1,2(70) +1,6(100) = 244 PSF RU= 244 PSF W= (10)(244)= 2.44 KLF 4444444444444 -30'----+ + TYPICAL BEAM CALCULATIONS +-f'c = 4 KSI Fy = 50 KSI 100 = 2.44 KLF Mu= = (2.44)(30)2 = 274.5 1K Assume a = 1" $b_{EFF} = min \left[\frac{1}{29} \frac{1}{4} \frac{$ Y= 6 - 3 = 5.5" USING LEFD TABLE 3-19 USE WI8X40 -> OMp= 294" PNA @ 7 (WORDT CASE) FOR 1/2= 5.5" - 0 (Mp= 4281K + ZQN= 147K ZQN= .859°cba - Q= 200 = .859°cb = .85(4)(90) = .480 1/2= 6- 48 = 5.76" -> ØMp= 430.6K 260 = 147 SHEALSTUD = 147 = 16.33 - 34 SHEAR STUDS BEAM DESIGN & W18 X40 w/ 34 SHEAR STUDS THIS BEAM SIZE IS LARGER THAN THE WIGER USED ON THE INTERIOR BEAMS, HOWEVER DOES MATCH BEAMS USED ON THE OUTER BAYS, THE INNER BAYS MAY HAVE ADDITIONAL SUPPORT ALLOWING THEM TO BE SMALLER.

-1	TYPICAL GIRDER CALCULATIONS -
	$P = \frac{1}{2} = \frac{2.14}{2} = \frac{2.14}{2} = \frac{2.6}{2} = \frac{36.6}{4}$
	$m_{J} = 36.6(10) = 366^{1K}$
	Assume $a=1''$ before min [120"]
	Yes) Yo= 5.5"
	TEV $W18 \times 55 = 0$ $\phi m_p = 400^{116}$
	366 " EQN = 810 "
	$m(w) = \frac{310}{6} = 2.65'' \qquad y_0 = 6 - \frac{3.65''}{2} = 4.675''$
	For PNA @ 7 & 1/2 4.675 - \$ \$ M7 = 580.8 1K
	DESIGN USES W21×50 WHICH HAS A ØMP=413 ^{IK} AND COULD HAVE JUST AS EASILY BEEN USED. LIGHTER WEIGHT MAY BE LESS COSTLY IN THIS SITUATION.
-7	TYPICAL COLUMN CALCULATIONS -
	DEAD LOAD = 70 + 5(SELF WEIGHT) = 75 PSF
	LIVE LOAD = 100 PSF
	1.2(75) + 1.6(100)= 25075F P3= 25075F
	Priver = 250(4500) = 1125K WU = 2.44+.05(1.2) = 2.5 KLF
	$ \Pi_{U} = \frac{\partial_{15} (30)^{2}}{10} - \frac{187.5}{10} $
	$ \begin{aligned} (\Pi_{U} = \frac{\partial_{15} (30)^{c}}{R_{c}} = 187.5^{1/k} \\ R_{WAL} = 30(2300) = 66.6^{-k} \\ R_{BT} = 1191.6^{-k} \\ P_{EFF} = 1498.35^{-k} \end{aligned} $
	$M_{U} = \frac{\partial_{15} (30)^{c}}{12} = 187.5^{1/k}$ $R_{WALL} = 30(2300) = 66.6^{K} \qquad R_{RT} = 1191.6^{K} \qquad R_{EFF} = 1498.35^{K}$ Assuming K=1 KL=14.67' WIY WED IN DESIGN SO START THERE
	$M_{U} = \frac{\partial_{15} f_{20}}{R_{2}} = 187.5^{1/k}$ $R_{UNIL} = 20(2200) = 66.6^{K} \qquad P_{RT} = 1191.6^{K} \qquad P_{EFF} = 1498.35^{K}$ Assuming K=1 KL=14.67' W14 Used in DESIGN SO START THERE $W14 \times 132 \qquad 1510 \times > 1498^{K} \le 0^{K}$
	$\begin{split} & \Pi_{U} = \frac{\partial_{15} f_{20} \partial_{15}^{K}}{R_{20}} = 187.5^{1K} \\ & \overline{R}_{WALL} = 30(2300) = 66.6^{K} & \overline{R}_{DT} = 1191.6^{K} & \overline{R}_{EFF} = 1498.35^{K} \\ & \overline{AssomuNG} K = 1 KL = 14.67' W14 \text{ used in Design so start there} \\ & W14 \times 132 1510 \times 1498^{K} : o_{K} \\ & \overline{THE} COLUMNS USED IN DESIGN RANGE FROM W14\times90 70 \\ & W14 \times 145. DEFENDING ON OTHER LOADS NOT ACCOUNTED FOR OR \\ \end{split}$
	$\begin{split} & \Pi_{U} = \frac{\partial_{15} f_{20} \partial_{1}^{K}}{R^{2}} = 187.5^{1K} \\ & \overline{R}_{WALL} = 20(2300) = 66.6^{K} & \overline{R}_{DT} = 1191.6^{K} & \overline{R}_{EFF} = 1498.35^{K} \\ & \overline{Assoming} & K = 1 & KL = 14.67' & W14 used in Design so start there \\ & W14 \times 132 & 1510 \times 1498^{K} : ox \\ & \overline{THE} & COLUMNS & USED IN DESIGN RANGE FROM W14×90 TO \\ & W14 \times 145. & \overline{DeFENDING} & ON OTHER & LOADS NOT ACCOUNTED FOR OR \\ & OVER & COMPENSATED FOR, THIS RESULT IS WITHIN ACCEPTABLE \\ & RANGE. \end{split}$
	$\begin{split} & \Pi_{U} = \frac{\partial_{1} \mathcal{S}(20)^{K}}{R^{2}} = 187.5^{1K} \\ & \overline{R}_{WNL} = 20(2300) = 66.6^{K} & \overline{R}_{RT} = 1191.6^{K} & \overline{P}_{EFF} = 1498.35^{K} \\ & \overline{Assoming} K=1 KL = 14.67^{1} W14 \text{ web in design so start there} \\ & W14 \times 132 1510 \times \times 1498^{K} :: o_{K} \\ & \overline{THE} (ULUMINS USED IN DESIGN) RANGE FROM W14.890 TO \\ & W14 \times 145. DEPENDING ON OTHER LOADS NOT Accounted For or OVER COMPENSATED FOR, THIS REDULT IS WITHIN ACCEPTABLE RANGE. \end{split}$